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Abstract
1.	 Rapid climate change is generating an urgent need to understand how organisms respond 

to environmental variation. Understanding these responses at an organismal level re-
quires environmental data at finer spatial and temporal scales than is available from global 
datasets. Current measurement technologies force a trade-off between collecting data at 
the broad spatial scales relevant to global change while simultaneously capturing environ-
mental variation at the fine spatial and temporal scales relevant to organisms. The great-
est hurdle to ameliorating this trade-off is the cost of commercially available sensors.

2.	 Here, we introduce environmental microcontroller units (EMUs), data loggers de-
signed and built to accurately measure fine-scale variation in temperature, humid-
ity, light, and soil moisture at low cost. We detail how to construct EMUs, test 
their utility in measuring microenvironment under field settings, and compare 
their accuracy to commercial data loggers in the same field setting.

3.	 Parts for EMUs cost less than $20 per unit; an order of magnitude less than com-
parable commercial loggers. Their cost-effectiveness allows for many more units 
to be deployed to measure microenvironment, providing the capacity for broader 
spatial sampling. Their programmability and modularity make them flexible, and 
they can be quickly assembled using unskilled labour.

4.	 Using EMUs in a field setting, we detected microenvironmental variation in tem-
perature, humidity, irradiance, and soil moisture at scales of <80 m. Despite their 
affordability, EMUs were of comparable accuracy to that of commercial sensors.

5.	 With the growing availability of inexpensive microcontrollers and hobbyist electron-
ics, the time is ripe to tap into the versatility and computational power of do-it-your-
self electronics to address critical ecological questions. In addition to marked cost 
advantages, EMUs are both more flexible and more capable than most commercial 
options, providing the tools to bypass the trade-off between the extent and resolu-
tion of environmental measurement. Yet, their simple design makes constructing 
them feasible for ecologists without specialist backgrounds in electronics.
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1  | INTRODUC TION

Conserving ecological systems under rapid climate change requires 
an understanding of how environmental change impacts the growth, 
development, distribution, and evolution of organisms (McLaughlin 
et al., 2017; Urban et al., 2016). Organisms respond to the local mi-
croenvironmental conditions they experience, not large-scale mean 
conditions (Bramer et al., 2018; Suggitt et al., 2011), but data are 
rarely available at sufficient spatiotemporal resolution to character-
ize the relationships between microenvironmental conditions and 
the responses of individual organisms (Ashcroft & Gollan, 2012; 
Kennedy, 1997). Instead, global datasets focus on broad patterns 
at coarse spatial resolutions due to trade-offs between cost and 
resolution. There is an increasing need for fine-scale environmental 
data to feed into mechanistic models of the climatic responses of 
organisms (Bramer et al., 2018; Urban et al., 2016).

Commercial data loggers such as iButtons (Maxim Integrated) 
and Hobos (Onset Computer) (Table 1; see Bramer et al., 2018 for 
review) are capable of measuring local environmental conditions 
at broad spatial scales (e.g., Ashcroft & Gollan, 2013), but cost, in 
particular, limits their utility for large-scale microenvironmental 
research (reviewed in Bramer et al., 2018). Given that the most 
inexpensive temperature and humidity data loggers typically cost 
$70–100 (Table 1), scaling up to many data loggers represents 

a substantial financial investment. Incorporating measurement 
capabilities for additional environmental variables such as light 
or soil moisture increases costs to $500–1000/unit (Table 1). In 
addition, commercial data loggers often fail permanently in field 
conditions, with reported failure rates of 7%–27% (Anderson 
et al., 2015; Ashcroft & Gollan, 2013; Lebrija-Trejos, Pérez-García, 
Meave, Poorter, & Bongers, 2011; Lewkowicz, 2008). Many do not 
have replaceable batteries or parts or cannot be repaired, thus 
limiting their life spans. Most data loggers have limited data mem-
ory and can only store several thousand measurements, forcing 
trade-offs between temporal resolution and duration.

An emerging alternative to expensive commercial loggers are 
do-it-yourself programmable microcontroller units (e.g., Arduino™, 
http://arduino.cc) and sensor modules that can accurately mea-
sure environmental conditions (Baker, 2014; Beddows & Mallon, 
2018; Ingelrest et al., 2010; Miller & Dowd, 2017; Wickert, 2014). 
Their programmability and modularity make them flexible, since 
researchers can control the software, configure various sensors, 
store more data, and choose their power source. While these mi-
crocontroller units have been used to gather research data, we 
posit that their cost-effectiveness allows for deployment of many 
units to measure microenvironment, allowing better spatial sam-
pling and mitigating a limitation of microenvironment research 
(Bramer et al., 2018).

TABLE  1 Cost and accuracy comparisons between environmental microcontroller units (EMUs) and commercial sensors. EMUs are less 
expensive than any commonly used commercial data logger, and a comparable HOBO system measuring the same variables costs 50× more. 
For commercial sensors, resolution and accuracy are those reported from data sheets. Readings refers to the number of sensor 
measurements that can be stored in the data logger's memory

Data logger/Unit Sensor Resolution Accuracy Readings Cost

EMU with temperature, humidity, solar radiation, and soil moisture $17.00

ESP8266 Microcontroller N/A N/A 80,000a $3.50

BME 280 Temperature 0.01°C 0.5°C $2.75

BME 280 Humidity 0.008% RH 3% RH $2.75

BH1750FVI PFD 22 μmol m−2 s−1b 51 μmol m−2 s−1b $0.95

Generic Soil Moisture Probe (VWC) 2.2e-5 m3/m3b 0.078 m3/m3b $0.40

Hobo with temperature, humidity, solar radiation, and soil moisture $850.00

H21-USB Microstation Data logger N/A N/A 85,000 $231.00

S-THB-M008 Temperature/Humidity 0.02°C 0.21°C $195.00

S-THB-M008 Temperature/Humidity 0.1% RH 2.5% RH $195.00

EC-5 Soil Moisture Sensor 0.0007 m3/m3 0.02 m3/m3 $139.00

S-LIA-M003 PAR sensor 2.5 μmol m−2 s−1 5 μmol m−2 s−1 $220.00

RS3-B Solar Radiation Shield N/A N/A $65.00

iButton Temperature/Humidity Hygrochron DS1923 0.0625°C ±0.5°C 2,048 $79.00

Hobo Pendant Temp/Light 8K 3,500 $47.00

Temperature 0.14°C ± 0.53°C

Light* N/A N/A

LiCor LI250 Light Meter LI-190R c. 0.1 μmol m−2 s−1 c. 4 μmol m−2 s−1 N/A $1,145

aNumber readings stored as CSV for EMUs, based on Lolin D1 mini flash capacity. Data could be stored more efficiently.
bResolution and RMSE accuracy from laboratory calibrations (see methods).
*Hobo Pendants only report relative light levels and are strongly biased by UV.

http://arduino.cc
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Here, we describe environmental microcontroller units (EMUs) 
built to measure microenvironmental variation in temperature, hu-
midity, light, and soil moisture. We provide detailed instructions and 
code to allow assembly in an ecology laboratory setting by research-
ers or students without prior experience with electronics. We com-
pare EMUs to commercial data loggers and field test them to assess 
their performance.

2  | DESCRIPTION OF THE EMU

Environmental microcontroller units consist of a microcontroller 
“computer” that is programmed to periodically measure and record 
data from an array of connected sensors. In contrast to previous 
DIY microcontroller builds based on the Arduino™ (Baker, 2014; 
Beddows & Mallon, 2018; Miller & Dowd, 2017; Wickert, 2014), 
EMUs use the ESP8266 microcontroller (Espressif Systems, Pudong, 
Shanghai, China) as part of the Lolin D1 Mini (http://www.wemos.cc). 
The ESP8266 is faster and possesses better features than the 
Arduino™: a higher CPU speed (80 Mhz vs. 16 Mhz), more RAM 
(c. 43 KB vs. 2 KB), built-in WiFi, and more flash storage space 
(512 KB–16 MB vs. 32 KB), eliminating the need for an SD card. 
We used prototyping breadboards, plugging in wires and compo-
nents to build the circuit powering the EMUs (Figure 1, Supporting 
Information Video S1, Table S1). Breadboard rows and columns 
are numbered and lettered, providing a simple way to copy the 
circuit without any electrical engineering experience (Supporting 
Information Video S1, Table S1). The non-permanent nature of 
breadboards allows for easy repair or reconfiguration (Baker, 
2014). The timekeeper was a battery-backed DS3231SN real time 

clock (Maxim Integrated, San Jose, CA). To minimize battery usage, 
we used the clock's built-in alarm pin to turn on a P-MOSFET 
switch at each logging interval, supplying power to the EMU for 
only c. 5 s while logging, minimizing battery drain.

We used open-source NodeMCU firmware (http://nodemcu.
readthedocs.io) for the ESP8266 microcontroller. This firm-
ware provides a filesystem, interactive Lua command prompt, 
and allows Lua scripts to be run. In addition to NodeMCU, the 
ESP8266 can also be programmed in Micropython, or using the 
Arduino IDE. We found, however, that NodeMCU provided the 
best support and features. Step-by-step instructions for building 
the EMUs are available (Video S1) and code and additional instruc-
tions are available on Github (https://github.com/mickley/EMU).

2.1 | Sensors

Our current EMU setup is capable of measuring a number of ter-
restrial microclimatic variables evaluated in previous studies (e.g., 
Ashcroft & Gollan, 2013; Lebrija-Trejos et al., 2011) using sen-
sors and sensor modules detailed in Table 1. We used a BME280 
(Bosch Sensortek, Kusterdingen, Germany) for temperature and 
relative humidity (RH). To prevent direct solar radiation from af-
fecting temperature and relative humidity measurements from 
the BME280, we built a radiation shield out of an inverted plastic 
cup bottom (Figure 1; Cowles, Wragg, Wright, Powers, & Tilman, 
2016). For light, we used a BH1750FVI (ROHM Semiconductor, 
Kyoto, Japan). This sensor has a spectral response of 400–720 nm, 
peaking between 470 and 650 nm, that provides a good approxi-
mation (see below) of photosynthetically active radiation (PAR), as 
measured by a photon flux density (PFD) sensor. Soil moisture was 

F IGURE  1 An environmental 
microcontroller unit (EMU) deployed 
in the field. Insets show the BME280 
temperature/humidity sensor hidden 
underneath the radiation shield and the 
soil moisture probe that is buried in the 
ground

http://www.wemos.cc
http://nodemcu.readthedocs.io
http://nodemcu.readthedocs.io
https://github.com/mickley/EMU
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measured using generic resistive two-pronged probes connected 
to an ADS1115 analog to digital converter (Texas Instruments, 
Dallas, TX) that converts voltage from the probes into a 15-bit 
number that can be calibrated to soil volumetric water content 
(VWC). Since both the light and the soil moisture sensors did not 
natively measure PFD or VWC, we calibrated these against known 
standards (Supporting Information Section 4, Figures S1 and S2). 
Environmental microcontroller units’ measurements were logged 
to a CSV file that can be downloaded to a computer via USB.

The entire unit was powered using four standard AA batteries. 
With the exception of the external sensors (temperature/humidity, 
PFD, and soil moisture probe), all of the electronics were housed in a 
plastic container with a gasketed lid. These containers have previously 
been field tested (Guevara & Mickley, 2017), and provide excellent low-
cost waterproofing. A hole was drilled in the side of the containers to 

allow wires to pass through and sealed with hot glue. The total mate-
rials cost of our sensor units was less than $20, including all sensors 
and components, considerably less expensive than commercial solu-
tions (Table 1). Costs associated with hours required to assemble units 
(using previously untrained students) were approximately $20 per unit, 
although there is an economy-of-scale when large numbers of EMUs 
are produced. A parts list, with costs and sources, and further building 
instructions are available on Github (https://github.com/mickley/EMU).

3  | PERFORMANCE TEST

Environmental microcontroller units were field tested in the UConn 
Forest (41.82517, −72.23813) for 3 weeks (30 May 2017 to 20 June 
2017). The site is a floodplain meadow ranging from wetland to mesic 

F IGURE  2 A depiction of our two 
transects. (a) Aerial imagery* with 
superimposed c. 1.5 m contours showing 
the meadow transect in red transitioning 
from meadow to wetland and the woods 
transect down a wooded hillside in blue. 
(b) The elevational gradient for the two 
transects. Stars represent the beginning 
of transects, and numbers correspond to 
those in Figure 3. *Retrieved from http://
cteco.uconn.edu/data/flight2016/index.
htm

https://github.com/mickley/EMU
http://cteco.uconn.edu/data/flight2016/index.htm
http://cteco.uconn.edu/data/flight2016/index.htm
http://cteco.uconn.edu/data/flight2016/index.htm
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woods. Eight EMUs were deployed at 10-m intervals along two 30-m 
transects (four per transect); one transect in an open meadow along 
a c. 0.9 m elevational gradient, the other c. 80 m away in woods with 
an elevational gradient of c. 5.8 m (Figure 2). EMUs were configured 
to take measurements every 15 min. For comparison, in addition to 
the EMUs, a HOBO Pendant® (UA-002-08, Onset Computer) meas-
uring temperature was deployed with each EMU along transects, 
and a Hygrochron™ iButton (DS1923, Maxim Integrated) measured 
temperature and humidity at the beginning of each transect.

4  | RESULTS AND DISCUSSION

The EMUs detected fine-scale spatiotemporal environmental vari-
ation (Figure 3, Supporting Information Section 5.3, Tables S2, S3) 
with accuracy comparable to commercial alternatives (Supporting 
Information Figures S1–S3), but cost an order of magnitude less 
(Table 1). In addition to being accurate and low cost, their “plug-
and-play” nature provides control of sensor selection (Supporting 
Information Section 3.3), offering greater flexibility and reparabil-
ity than commercial sensors. Users can program the timing and 
frequency of measurements, on-board calculations of additional 

variables (Ashcroft & Gollan, 2013), and potentially, control of ex-
ternal research equipment based on measurements (e.g., automatic 
watering). Thus, the simple, flexible, and low-cost design of EMUs is 
applicable to a wide range of fields, settings, and applications.

After accounting for temporal trends, models indicated that 
field transects differed significantly for all environmental variables 
(Figure 3, The woods transect was cooler (1.98 ± 0.80°C), more humid 
(4.21 ± 1.55% RH), had lower light (300.69 ± 13.43 μmol m−2 s−1), and 
had a soil VWC that was drier (0.14 ± 0.02 m3/m3). Significant differ-
ences were also detected between sampling points within transects 
(<30 m apart) for humidity, VWC, and PFD, but not for temperature 
(Figure 3). We captured considerable temporal variation, both within 
and among days (Supporting Information Figure S4).

Over the time interval, 88.6% of all possible data points were 
logged successfully. All of the missing data were due to moisture-
related failure of a single EMU, or due to temporary sensor failures 
(Supporting Information Sections 3.2 and 5.5). Battery current draw 
was c. 20 mA for 5 s while measuring, and <10 μA between mea-
surements, for theoretical AA battery life of up to 2 years measur-
ing every 15 min. Temperature and humidity measurements using 
our EMUs corresponded strongly to those from iButtons and Hobo 
Pendants at the same locations (Supporting Information Figure S3; 

F IGURE  3 A comparison of the 
microenvironmental variation detected 
within and between transects. Points and 
error bars represent model coefficients 
and their standard errors from generalized 
additive mixed models run separately for 
each transect, with transect position as a 
fixed factor (within-transect differences). 
Points separated by the dashed line 
denote coefficients and standard errors 
from a generalized additive mixed model 
containing transect identity as a fixed 
factor (between-transect differences). 
For all four environmental variables, 
differences between transects are in 
the directions expected a priori (see also 
Supporting Information Tables S2,S3). 
Temperature and humidity data for 
one environmental microcontroller unit 
(EMU) were excluded from this and other 
analyses due to suspect readings prior to 
failing completely (Supporting Information 
Section 5.5)
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iButton vs. EMU temperature: R2 = 0.998; Hobo vs. EMU tempera-
ture: R2 = 0.987, iButton vs. EMU humidity: R2 = 0.986).

4.1 | Future engineering priorities

Environmental microcontroller units can potentially be expanded 
using their built-in WiFi. WiFi allows wireless “sensor networks” 
(Ingelrest et al., 2010) to measure microenvironment across larger 
spatial scales without human intervention. Data can be logged di-
rectly to the Internet, allowing remote monitoring of conditions in 
real time, or generating alerts.

Certain types of homemade radiation shields may bias tem-
perature measurements upwards (Holden, Klene, Keefe, & Moisen, 
2013; Terando, Youngsteadt, Meineke, & Prado, 2017). Although 
this limitation is not unique to EMUs, engineering better radiation 
shields that are cost-effective is a priority. Corrosion of untreated 
sensors and wire connections, over several weeks, increased fail-
ure rates during rain (Supporting Information Section 3.2). For all 
sensor types, moisture damage presents a problem, sometimes 
causing high failure rates (Anderson et al., 2015; Ashcroft & Gollan, 
2013; Lebrija-Trejos et al., 2011; Lewkowicz, 2008). The failure 
rate in our study (11.4%) was comparable to those of commercial 
sensors. Subsequently, we have greatly reduced EMU sensor mois-
ture failures by coating sensors with a silicone coating (Supporting 
Information Section 3.2).

5  | CONCLUSION

The easy-to-build EMUs we present provide an inexpensive and 
flexible alternative to commercial weather stations without sacrific-
ing data accuracy. While DIY hardware and microcontrollers have 
been used occasionally in ecological research with great success, 
these methods have not yet captured the attention of the main-
stream ecologist. Environmental microcontroller units can facilitate 
adoption of DIY electronics by a broader spectrum of scientists and 
students. The combination of flexibility, affordability, and accuracy 
opens new avenues for collecting the well replicated, high-quality 
fine-scale environmental data necessary to understand the re-
sponses of organisms to environmental gradients and rapid global 
change.
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